

Innovative Medicines Initiative

Delivery and Targeting Mechanisms for Biological Macromolecules

Presenters:

Ekkehard Leberer (Sanofi) and Steve Hood (GlaxoSmithKline)

Coordinator: Sanofi Deputy coordinator: GlaxoSmithKline

Participating companies: Sanofi, GlaxoSmithKline, AstraZeneca, and Novo Nordisk

Innovation gap in drug development

- Increasing R&D expenditures
 - R&D costs have tripled during the last 15 years (\$ 17 bn in 1996 → \$ 47 bn in 2009)
- Stagnating output
 - Approx. 4,500 new molecules (900 in oncology) are currently being developed
 - Every year only approx. 30 new molecules are approved by health authorities (53 in 1996 → 24 in 2009)
 - Attrition rate of > 95%
- Limited drug target space
- Increasing generic competition

\rightarrow An environment ripe for change and opportunity

Source: PhRMA Outlook 2010 Report, FDA

Critical steps for innovation

We know what to target	Therapeutic modalities	Translational medicine
<section-header></section-header>	<section-header> Small molecules Biologics Proteins Peptides Oligonucleotides Therapeutic stem cells </section-header>	<section-header></section-header>
Adapted from Fishman & Porter: <i>Nature</i> 437 , 491 (2005)		

Novel biologics-based therapeutic modalities: Antibodies and scaffolds

- Huge success of therapeutic antibodies
- Many new antibody formats in development

Adapted from Holliger & Hudson: *Nat. Biotech.* **23**, 1126 (2005)

• Alternative non-antibody scaffolds

Adapted from Binz H.K. et al.: Nat. Biotech. 23, 1257 (2005); Skerra A.: Curr. Opin. Biotech. 18, 295 (2007)

Novel biologics-based therapeutic modalities: Oral peptides

Example: Oral delivery of insulin

- Generate insulin nanoparticles
- Transport across the intestinal epithelium
 - Paracellular
 - Transcytosis (enterocytes)
 - Transcellular (M cells)
 - Receptor mediated of free insulin

Adsorbed

Encapsulated

Adapted from Damge et al: Expert Opin. Drug Deliv. 5, 45 (2008)

Novel biologics-based therapeutic modalities: Oligonucleotides

Novel biologics-based therapeutic modalities: RNAi therapeutics

Novel biologics-based therapeutic modalities: miRNAs and siRNAs

Adapted from De Fougerolles A. et al.: Interfering with disease: a progress report on siRNA-based therapeutics. *Nat. Rev. Drug Disc.* **6**, 443-453 (2007)

Common challenges of biological macromolecules

- Limited tissue accessibility
 - Limited delivery across biological barriers
- Poor delivery across cellular membranes
 - Restricted to extracellular targets
- Undesirable pharmacokinetic properties
 - Short half-life in blood
 - Rapid excretion
 - Reduced stability
- Potential immunogenecity
- Cost-of-goods affected by poor delivery properties

- Improve understanding of intracellular uptake mechanisms of biomacromolecular drugs (proteins, peptides and oligonucleotides)
- Develop nanocarriers to deliver these new drugs
 - To and across epithelial barriers, such as
 - Blood brain barrier (BBB), air-blood barrier, blood-retina barrier, skin barrier, intestinal barrier
 - Across cellular membranes into target cells
- Develop nanocarriers for oral uptake of these drugs

- Individual Pharma Companies tend to be compound driven with little scope for fundamental research
- The successful delivery of macromolecules in a clinical setting will require significant tangential research to provide platform understanding of the challenges
- This can only be delivered by a cross-functional/ cross-institutional consortium of academic, Small Medium Enterprises (SMEs), regulatory and industrial scientists

Suggested architecture of the project

Proposed work package areas

- Understanding the mechanisms of uptake of biomacromolecules across biological barriers
- Investgating the mechanisms of cellular uptake and sorting
- Novel approaches to delivery of biomacromolecules across biological barriers and cellular membranes
- Pre-Clinical and Clinical testing of new formulations
- Database and analysis
- Project Management

Cellular barriers to successful delivery

Adapted from Marsh and Helenius, Cell, 124, 729-40

Expected contributions of the applicants

- Molecular and cellular biology
 - Mechanisms of cellular uptake and intracellular trafficking
 - Imaging technologies for monitoring and quantification of cellular uptake and intracellular trafficking
 - Generation of *in vitro* and *in vivo* models for monitoring cellular uptake and intracellular trafficking
- Nanotechnology / Formulation
 - Protein and nucleic acid chemistry, e.g. for conjugation with targeting molecules
 - Generation of novel nanocarriers for delivery of biological macromolecules across biological barriers and cellular membranes
- Manufacturing
 - Combined payload and delivery system

Expected (in kind) contributions of EFPIA members

- Project direct
 - Supply of biological macromolecules as tool payloads (e.g. proteins, antibodies, oligonucleotides)
 - Testing of novel nanocarriers in disease-relevant *in vitro* systems
 - Pharmacological studies using nanocarriers in appropriate disease animal models to fulfil IND requirements
 - Design of prospective clinical trial(s): resources and expertise for trial design
 - Execution of prospective clinical trial(s) and interpretation of results: resources and expertise to conduct multi-centre clinical trials (monitoring, data management, etc.)
- Support functions
 - Project Management
 - Statistical Analysis

- **Basic research** in molecular mechanisms of cellular uptake of biological macromolecules, e.g.
 - Mechanisms to cross cellular membranes
 - Endosomal escape mechanisms
- **Basic research** in nanocarrier technologies
 - Share nanocarriers for delivery of competitive biological drug substances
- Synergies among protein, peptide and oligo uptake mechanisms

- Similar size (>5kd), charge and shape

- Directly Benefit Patients with your research
 - Yor work will lead to better medicines
 - Targetting previously "undruggable" diseases
 - Facilitate the "Bench to bed-side" paradigm
- Chance to be involved in a new environment for developing the next generation of drugs
 - Be part of a pan-European network focussed on developing future therapeutic modalities in a pre-competitive environment
 - Access to academic expertise
 - Access to Pharma drug development capability
 - Access to IMI resources

Expected impact on the R&D process

- Novel therapeutic opportunities
 - Providing novel strategies to treat unmet medical needs
 - Expansion of drug target space
 - "Non-druggable" targets
 - Pathways/networks of pathways instead of single targets
- Strengthening of novel biological-based therapeutic modalities
 - Improved delivery will increase the therapeutic index
 - Reduce effective doses required
 - Increasing investor confidence that new therapeutic modalities will deliver viable medicines

Novel Molecules + Improved Delivery = Better Medicines

Key deliverables of full project

- Elucidation of cellular uptake mechanisms of biological macromolecules
 - Proteins, peptides, oligonucleotides
- Nanotechnology-based delivery methods
 - Scalable chemistry of nanocarriers
 - Provide drug-like ADME properties to biological macromolecules
 - Cross biological and/or cellular barriers
- Delivery strategies appropriate for the clinic
 - Oral uptake, inhalation, topical
 - Injectable: I.V., subcutaneous, intra-articular, intra-thecal

Combine forces of industry and academia to generate the next generation of biologics-based medicines

We make biologics happen!

Please address all questions through the IMI Executive Office infodesk@imi.europa.eu

www.imi.europa.eu